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1. Introduction

In this paper we study certain invariant subspaces (that is, submodules) of
tuples of operators (that is, Hilbert modules over unital and associative free
algebras generated by noncommuting variables) in the setting of noncommu-
tative operator theory and noncommutative varieties. The noncommutative
operator theory was introduced in the middle eighties by Frazho [10, 11]
and Bunce [5] (see, however, Taylor [27]). However, in the late eighties, a
more systematic formalism of noncommutative operator theory began with
the work of Popescu on isometric dilations and analytic models of infinite
sequences of noncommuting operators [16, 17]. Popescu’s noncommutative
operator theory has a wide range of applications in different context and re-
search areas as, free analysis and matrix convex sets [4], Hilbert C∗-modules
[13], moment problem and Cuntz algebras [9] and operator algebras [7, 8] and
multivariable operator theory and function theory [1], just to name a few. On
the other hand, the theory of noncommutative varieties, again introduced by
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Popescu [20], establishes a fundamental connection between noncommutative
and commutative operator theory and function theory in several complex
variables.

In the setting of noncommutative operator theory, noncommutative
polydomains and noncommutative varieties, introduced by Popescu in [21],
are analogue of polydisc in Cn . Popescu’s theory of polydomains can be seen
as an attempt to unify the function theory and multivariable operator theory
(both commutative and noncommutative) on the open unit ball and polydisc
like domains in Cn.

The goal of the present paper is to examine a general technique for
characterizing joint invariant subspaces of the noncommutative Hardy space
on noncommutative polydomains and noncommutative varieties.

We emphasize that the notion of Fock space (we also call Fock module)
that plays the central role in noncommutative operator theory and used in
the free analytic models also plays significant role in noncommutative poly-
domains. Here one actually needs to deal with the tensor products of Fock
spaces. From this point of view, in this paper, we characterize invariant sub-
spaces of tensor products of Fock spaces. In order to be more specific, here
we introduce the notions of Fock module, Fock n-modules and multi-analytic
maps, the most necessary technical background for the study of noncommu-
tative multivariable operator theory, and refer the reader to Section 2 for a
more detailed discussion.

Throughout this article, n and k will denote natural numbers. We
also denote by n = (n1, . . . , nk) a k-tuple of natural numbers. Consider
the n-dimensional Hilbert space Cn with the standard orthonormal basis
{e1, . . . , en}. The Fock module F 2

n is defined by

F 2
n =

⊕
m∈Z+

(Cn)⊗m,

where (Cn)⊗0 = C and (Cn)⊗m is the m-fold Hilbert space tensor product
of Cn. Define the left creation operators S1, . . . , Sn on F 2

n by Sif := ei ⊗ f ,
f ∈ F 2

n . It is easy to see that S∗
i Sj = δi,jIF 2

n
for all i, j = 1, . . . , n, that is,

(S1, . . . , Sn) is an n tuple noncommuting isometries with orthogonal ranges.
Similarly, we define the right creation operators (R1, . . . , Rn) by setting Rif =
f ⊗ ei, f ∈ F 2

n . The Fock n-module F 2
n is defined by

F 2
n = F 2

n1
⊗ · · · ⊗ F 2

nk
.

Now for each i ∈ {1, . . . , k}, we denote the ni-tuple of creation operators on
F 2
ni

(instead of (S1, . . . , Sni
)) by

Sni = (Si1, . . . , Sini).

Then, for each j ∈ {1, . . . , ni} we define the operator Sij acting on the Fock
n-module F 2

n by setting

Sij := IF 2
n1

⊗ · · · ⊗ IF 2
ni−1

⊗ Sij ⊗ IF 2
ni+1

⊗ · · · IF 2
nk
.
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It is now evident that SijSpq = SpqSij and S∗
ijSpq = SpqS

∗
ij for all 1 ≤ i <

p ≤ k, j = 1, . . . , ni, and q = 1, . . . , np. In other words, for each i = 1, . . . , k,

Sni
:= (Si1, . . . ,Sini

),

is an ni-tuple of noncommuting isometries with orthogonal ranges acting
on the Fock n-module F 2

n. We set the k-tuple of tuples of noncommuting
isometries S as

S = (Sn1 , . . . ,Snk
).

Finally, for Hilbert spaces E and E∗, an operator Θ : F 2
n ⊗ E → F 2

n ⊗ E∗ is
called multi-analytic if

Θ(Si ⊗ IE) = (Si ⊗ IE∗)Θ (i = 1, . . . , n).

The set of all such multi-analytic operators will be denoted by R∞
n ⊗B(E , E∗).

In this paper we classify joint invariant subspaces of S. We also aim to
illustrate our ideas in the setting of noncommutative varieties (see Section
5). At the present stage, it is worthwhile to point out that a certain classes of
joint invariant subspaces of S as well as shifts on noncommutative varieties
has been considered by Popescu (for instance, see [22, Corollary 5.3], and the
recent one [24, Theorem 5.2]). These are either analog of doubly commuting
invariant subspaces or Brehmer type invariant subspaces. In the present set-
ting, our classification results hold for general joint invariant subspaces of S
and shifts on noncommutative varieties

We summarize the main contribution of this paper as follows: Section
2 contains preliminary notions, and some basic observations. In section 3 we
lay the foundation for the main body of this paper, and prove a key result
concerning representations of commutant of pure isometric tuples. An n tuple
of operators V = (V1, . . . , Vn) acting on some Hilbert space H is called a pure
isometric tuple if V ∗

i Vj = δijIH for all i, j ∈ {1, . . . , n} and

SOT- lim
m→∞

∑
|α|=m

α∈F+
n

V αV ∗α = 0,

where F+
n denotes the unital free semigroup on n generators g1, . . . , gn and the

identity e, Xα = Xi1 · · ·Xim and |α| = m for all α = gi1 · · · gim ∈ F+
n . In this

case (see Lemma 3.1), there exists a canonical unitary map LV : H → F 2
n⊗E ,

where E = ∩n
i=1 kerV

∗
i , such that

LV Vi = (Si ⊗ IE) (i = 1, . . . , n).

The unitary LV is essentially the dilation map (which we call canonical mod-
ule unitary operator) and related to the noncommutative Poisson transforms
of Popescu [22]. In Theorem 3.2, we use this approach (which is not very
different from the earlier approach of Popescu) to reprove Popescu’s noncom-
mutative version of the classical Beurling-Lax-Halmos theorem [17]: A closed
subspace M ⊆ F 2

n ⊗E∗ is invariant under S⊗IE∗ = (S1⊗IE∗ , . . . , Sn⊗IE∗) if
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and only if there exists an inner multi-analytic operator Θ : F 2
n⊗E → F 2

n⊗E∗
such that M = Θ(F 2

n ⊗ E), where

E = M	
n∑

i=1

(Si ⊗ IE∗)M.

Up until this point, the results of Section 3 are all due to Popescu. However,
the present unification (or rearrangement) is slightly different, which is also
essential for the main body of this paper. The only new result of Section 3
is the explicit representations of commutants of pure isometric tuples (see
Theorem 3.3): C ∈ {V1, . . . , Vn}′ if and only if there exists a multi-analytic
operator Φ ∈ R∞

n ⊗B(E) such that LV CL∗
V = Φ and the Fourier coefficients

of Φ are given by

ϕαt = PEV
α∗C|E (α ∈ F+

n ).

This key result plays an important role in what follows. Here R∞
n (respec-

tively F∞
n ) is the noncommutative analytic Toeplitz algebra, the weakly closed

algebra generated by the right (respectively left) creation operators and
the identity operator {Ri : i = 1, . . . , n} ∪ {IF 2

n
} (respectively {Si : i =

1, . . . , n} ∪ {IF 2
n
}).

Now we turn to Section 4. We continue to assume that M ⊆ F 2
n ⊗E∗ is

a closed subspace. Let T ∈ B(F 2
n ⊗ E∗) and suppose

T (Si ⊗ IE∗) = (Si ⊗ IE∗)T (i = 1, . . . , n).

We know from Popescu’s noncommutative version of the classical Beurling-
Lax-Halmos theorem (as also stated above) that M is invariant under S⊗IE∗

if and only if M = Θ(F 2
n ⊗ E) for some inner multi-analytic operator Θ :

F 2
n ⊗ E → F 2

n ⊗ E∗. In Theorem 4.1, we prove that TM ⊆ M if and only if
there exists a multi-analytic operator Φ ∈ R∞

n ⊗B(E) with (explicit) Fourier
coefficients

ϕαt = PE(S
α∗ ⊗ IE∗)T |E (α ∈ F+

n ),

such that

TΘ = ΘΦ.

In other words, TM ⊆ M if and only if Popescu’s inner multi-analytic oper-
ator Θ satisfies the above operator equation for some explicit Φ. While this is
the only new component of Theorem 4.1, the proof of this also requires prov-
ing Popescu’s noncommutative version of the Beurling-Lax-Halmos theorem
in our present terminology. In other words, the present proof of Popescu’s
result (which is a little different than that of Popescu) in our terminology is
inescapable for the purpose of the new part of Theorem 4.1. It is also worth-
while to note that the entire proof of Theorem 4.1 follows the ground rules
laid down in all the previous results.

Putting all the pieces together from the above, in Corollary 4.3, we charac-
terize invariant subspaces of Fock n-module as follows: Let M be a closed
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subspace of the Fock n-module F 2
n. Let

E = M	
n1∑
j=1

S1jM,

and En = F 2
n2

⊗ · · · ⊗ F 2
nk
. Then XM ⊆ M for all X ∈ Sni , i = 1, . . . , k, if

and only if there exist an inner multi-analytic operator Θ ∈ R∞
n1
⊗B(E , En)

and multi-analytic operators Φij ∈ R∞
n1
⊗B(E), for all i = 2, . . . , k and j =

1, . . . , ni, such that

M = Θ(F 2
n1

⊗ E) and SijΘ = ΘΦij .

In this case, the multi-analytic operators Φij ∈ R∞
n1
⊗B(E), i = 2, . . . , k and

j = 1, . . . , ni, are uniquely determined by M (which essentially follows from
Corollary 4.3 and Remark 4.4). Moreover, for each i = 2, . . . , k, the ni-tuple
Φni

= (Φi1, . . . ,Φini
) on F 2

n1
⊗E is a pure isometric tuple (see Remark 4.4),

whereas the restriction tuple

(Sn1 |M,Sn2 |M, . . . ,Snk
|M) on M,

and the pure isometric tuple

(Sn1 ⊗ IE ,Φn2 , . . . ,Φnk
) on F 2

n1
⊗ E ,

are jointly unitarily equivalent. Finally, in Theorem 4.5, we prove that the
above tuple (Φn2

, . . . ,Φnk
) on F 2

n1
⊗ E is unique in an appropriate sense.

In Section 5, we pass from the Fock n-module to constrained Fock n-
modules and prove analogous results for invariant subspaces of constrained
tuples. Suppose J be a weak operator topology closed two-sided proper ideal
in F∞

n . Define NJ := F 2
n 	 JF 2

n . Then NJ is a joint invariant subspace of
(S∗

1 , . . . , S
∗
n). Following [20], define the constrained left creation operators as

Bi := PNJ
Si|NJ

(i = 1, . . . , n).

Then B = (B1, . . . , Bn) is an n-tuple of constrained left creation operator
on NJ . In Theorem 5.2, we prove the following analog of Theorem 4.1 in the
setting of noncommutative varieties: Let E∗ be a Hilbert space, T ∈ B(NJ ⊗
E∗), M ⊆ NJ ⊗ E∗ be a closed subspace, and let T (Bi ⊗ IE∗) = (Bi ⊗ IE∗)T
for all i = 1, . . . n. Then

TM ⊆ M and (Bi ⊗ IE∗)M ⊆ M (i = 1, . . . , n),

if and only if there exist a closed subspace E of NJ ⊗E∗, a constrained multi-
analytic partial isometry

Θ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E , E∗),
and a constrained multi-analytic operator

Φ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E),
such that

M = Θ(W1, . . . ,Wn)(NJ ⊗ E),
and

TΘ(W1, . . . ,Wn) = Θ(W1, . . . ,Wn)Φ(W1, . . . ,Wn).
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Just as in the case of Theorem 4.1, the above result, without the T part,
is Popescu’s version of constrained Beurling, Lax and Halmos theorem [20,
Theorem 1.2]. However, this time, our proof also brings out additional geo-
metric flavor to Popescu’s constrained Beurling, Lax and Halmos theorem.
For instance, we prove that the initial coefficient space of Θ(W1, . . . ,Wn) is
contained in NJ ⊗ E∗, that is

E ⊆ NJ ⊗ E∗.
This inclusion appears to be a new addition to Popescu’s original result. This
extra piece of information (along with other techniques invoked in the proof
of Theorem 5.2) appears to be more fruitful in concrete situations. However,
to keep the flow of the relevant results of this section, we move the proof of
the above inclusion in Section 6 (see Lemma 6.2).
The final result of Section 5 is a classification of invariant subspaces of Fock
n-modules: Given n = (n1, . . . , nk) ∈ Nk and weak operator topology closed
two-sided proper ideal Ji in F∞

ni
, i = 1, . . . , k, the constrained Fock n-module

NJn is defined by

NJn := NJ1 ⊗ · · · ⊗NJk
.

Set En = NJ2
⊗ · · · ⊗NJk

, and define Bni
= (Bi1, . . . ,Bini

), the ni-tuple on
NJn , where Bij = PNJn

Sij |NJn
for all i = 1, . . . , k and j = 1, . . . , ni. Now

suppose M ⊆ NJn be a closed subspace. Then XM ⊆ M for all X ∈ Bni
,

i = 1, . . . , k, if and only if there exist a Hilbert space E∗, a constrained
multi-analytic partial isometry Θ ∈ W (W11, . . . ,W1n1)⊗B(E∗, En), and a
constrained multi-analytic operator

Φij ∈ W (W11, . . . ,W1n1
)⊗B(E),

such that M = Θ(NJ1 ⊗ E∗), and
BijΘ = ΘΦij ,

for all i = 2, . . . , k and j = 1, . . . , ni (see Section 5 for more details).
In Section 6, we examine the structure of invariant subspaces of Drury-

Arveson n-module

H2
n = H2

n1
⊗ · · · ⊗H2

nk
.

In this particular situation, our results are more definite compared to that of
Section 5 (see for instance, Corollaries 6.1, 6.3, and 6.4). It is worthwhile to
note that the problem of describing invariant subspaces of constrained tuples
in the setting of noncommutative varieties is somewhat more challenging
(essentially due to the non-uniqueness issue of the commutant lifting theorem,
see Section 6).

Section 7 present an example of dimension inequality of fibres of the
noncommutative Beurling, Lax and Halmos theorem which also, in particu-
lar, show that certain natural generalizations of the classical results are not
possible in noncommutative operator theory.

Part of the present investigation may be regarded as a generalization
of some of the results concerning invariant subspaces of the Hardy module
H2(Dn) over unit polydisc Dn [12]. However, we wish to point out that even in
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the particular case of H2(Dn), our results are slightly different and somewhat
more convenient from that of [12] (see the final paragraph in Section 4). Also,
in what follows, we will use the standard terminology of Hilbert modules. In
particular, this setting is more convenient and economic to deal with the
techniques involved in the results presented here.

2. Preliminaries and basic observations

Given two Hilbert spaces H1 and H2, the set of bounded linear operators
from H1 to H2 will be denoted by B(H1,H2). If H1 = H2, then we shall
write B(H1) for B(H1,H1). Given an n-tuple X = (X1, . . . , Xn) on H, we
define a completely positive map QX : B(H) → B(H) (see [15]) by

QX(A) :=

n∑
i=1

XiAX∗
i (A ∈ B(H)).

We say that X is a row contraction if (IB(H) −QX)(IH) ≥ 0, or equivalently

n∑
i=1

XiX
∗
i ≤ IH.

Therefore, if we denote

B(H)n = {X = (X1, . . . , Xn) : X1, . . . , Xn ∈ B(H)},
then, the set of all row contractions on H, given by

B(n)(H) := {X ∈ B(H)n : (IB(H) −QX)(IH) ≥ 0},
is the noncommutative unit ball in B(H)n. Also it is easy to see that if
X ∈ B(n)(H), then

IH ≥ QX(IH) ≥ Q2
X(IH) ≥ . . . ≥ 0,

which allows one to define a self-adjoint and contraction operator Q∞
X in

B(H) as

Q∞
X := SOT− lim

l→∞
Ql

X(IH).

Note also that
Qm

X(IH) =
∑

|α|=m

α∈F+
n

XαX∗α.

The following is now immediate:

Lemma 2.1. Q∞
X = 0 if and only if SOT- lim

m→∞

∑
|α|=m

α∈F+
n

XαX∗α = 0.

The tuples of left and right creation operators are closely related to each
other. In order to see this, we define

eα =

{
ei1 ⊗ · · · ⊗ eim if α = gi1 · · · gim
1 if α = e,
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for all α ∈ F+
n . Next we define the flip operator Ut : F

2
n → F 2

n by

Ut(eα) := eαt ,

where αt := gim · · · gi1 and α = gi1 · · · gim ∈ F+
n . Clearly, Ut is unitary,

U2
t = IF 2

n
and

Ut(f ⊗ g) = Utf ⊗ Utg,

for all f, g ∈ F 2
n . Moreover, for α ∈ F+

n , since Rαf = f ⊗ eαt , f ∈ F 2
n , it

follows that
Rα = UtS

αUt.

Let C〈Z1, . . . , Zn〉 denote the unital and associative free algebra generated
by n noncommutative variables Z1, . . . , Zn over C. Then

C〈Z1, . . . , Zn〉 =
⊕

α∈F+
n

CZα,

where Zα = Zi1 · · ·Zim for each α = gi1 . . . gim ∈ F+
n . Now let {X1, . . . , Xn}

be (not necessarily commuting) bounded linear operators on a Hilbert space
H. We realize H as a C〈Z1, . . . , Zn〉-Hilbert module as follows:

C〈Z1, . . . , Zn〉 × H → H,

with
(p(Z1, . . . , Zn), f) 7→ p(Z1, . . . , Zn) · f := p(X1, . . . , Xn)f,

for p(Z1, . . . , Zn) in C〈Z1, . . . , Zn〉 and f ∈ H. We say that H is a (left)
Hilbert module corresponding to X = (X1, . . . , Xn) ∈ B(H)n. Often we will
simply say that H is a C〈Z1, . . . , Zn〉-Hilbert module (or simply a Hilbert
module when no confusion can result) if X is clear from the context. Given
C〈Z1, . . . , Zn〉-Hilbert modules H and K corresponding to X ∈ B(H)n and
Y ∈ B(K)n, respectively, a bounded linear operator A ∈ B(H,K) is said to be
a module map if AXi = YiA, i = 1, . . . , n. We say that H is a row-contractive
Hilbert Module if (X1, . . . , Xn) ∈ B(n)(H). In addition, if Q∞

X = 0, then we
say that the Hilbert module H is pure.

Let H be a row-contractive C〈Z1, . . . , Zn〉-Hilbert module, and let M
be a closed subspace of H. We say that M is a submodule of H if XiM ⊆ M
for all i = 1, . . . , n. In this case, we also treat M as a C〈Z1, . . . , Zn〉-Hilbert
module corresponding to the n-tuple

X|M = (X1|M, . . . , Xn|M).

We record for clarity and future use that the pure property of Hilbert modules
carry over to submodules (see the first part of the proof of [26, Theorem 3.2]):

Lemma 2.2. Any submodule of a pure and row-contractive C〈Z1, . . . , Zn〉-
Hilbert module is pure and row-contractive C〈Z1, . . . , Zn〉-Hilbert module.

Proof. Let H be a pure and row-contractive C〈Z1, . . . , Zn〉-Hilbert module,
and let M be a submodule of H. For h1, . . . , hn ∈ M, we have

‖
n∑

i=1

Xi|Mhi‖2 = ‖
n∑

i=1

Xihi‖2 ≤
n∑

i=1

‖hi‖2,
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and hence IM−QX|M(IM) ≥ 0 or, equivalentlyX|M ∈ B(n)(M). Now, it can
be checked easily, using Xi|M(Xj |M)∗ = (XiPMX∗

j )|M for all i, j = 1, . . . , n,
that

Qm
X|M(IM) =

( ∑
|α|=m

α∈F+
n

XαPMX∗α
)
|M,

for all m ≥ 0, and hence Q∞
X|M = 0. �

The quintessential example of pure and row-contractive Hilbert mod-
ules over the noncommutative algebra C〈Z1, . . . , Zn〉 is the Fock module F 2

n

corresponding to (S1, . . . , Sn). If n = 1, then the full Fock module F 2
1 can be

identified with the Hardy module H2(D) over the unit disk and both F∞
1 , R∞

1

coincide with H∞(D). Also note that the C〈Z1, . . . , Zn〉-Hilbert module cor-
responding to the right creation operators (R1, . . . , Rn) is isometrically iso-
morphic, via the flip operator, to the Fock module.

Given a Hilbert space E , the E-valued Fock module is the C〈Z1, . . . , Zn〉-
Hilbert module F 2

n ⊗ E corresponding to the tuple

S ⊗ IE = (S1 ⊗ IE , . . . , Sn ⊗ IE) ∈ B(n)(F 2
n ⊗ E).

When the Hilbert space E is clear from the context, we also write S instead
of S ⊗ IE . It is well known that

C⊗ E =

n∩
i=1

ker(Si ⊗ IE)
∗,

and

IF 2
n⊗E −

n∑
i=1

(Si ⊗ IE)(Si ⊗ IE)
∗ = PC ⊗ IE ,

where PC denotes the orthogonal projection of F 2
n onto the vacuum space

C ⊆ F 2
n . We say that a bounded linear operator Θ : F 2

n ⊗ E → F 2
n ⊗ E∗ is

multi-analytic if Θ is a module map, that is, Θ(Si ⊗ IE) = (Si ⊗ IE∗)Θ for all
i = 1, . . . , n. It is well known (see for example[19, Theorem 1.1]) that the set
of module maps coincides with the weakly closure, denoted by R∞

n ⊗B(E , E∗),
of by the spatial tensor product R∞

n with B(E , E∗). Here, by an abuse of
notation, the functional calculus (Proposition4.2 [18]) of Θ(R1, . . . , Rn) is
given by

Θ(R1, . . . , Rn) = SOT- lim
r→1−

∞∑
m=0

∑
|α|=m

r|α|Rα ⊗ θα. (2.1)

Moreover, each Fourier coefficient θα ∈ B(E , E∗), α ∈ F+
n , is uniquely deter-

mined by Θ as follows:

〈θαtη, ζ〉 = 〈Θ(1⊗ η), eα ⊗ ζ〉, (2.2)

for all η ∈ E and ζ ∈ E∗. Elements of R∞
n ⊗B(E , E∗) will be denoted by

Θ(R1, . . . , Rn), or simply by Θ if (R1, . . . , Rn) is clear from the context.
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A bounded linear operator M ∈ B(F 2
n ⊗E , F 2

n ⊗E∗) is said to be multi-
coanalytic if

M(S∗
i ⊗ IE) = (S∗

i ⊗ IE∗)M,

for all i = 1, . . . , n. If Θ ∈ B(F 2
n ⊗ E , F 2

n ⊗ E∗) is both multi-analytic and
multi-coanalytic, then by (2.2), we have that

〈θαtη, ζ〉 = 〈(Sα∗ ⊗ IE)(1⊗ η), Θ∗(1⊗ ζ)〉 = 0,

for all α ∈ F+
n \ {e}, η ∈ E and ζ ∈ E∗. On the other hand, if Θ ∈

B(F 2
n ⊗ E , F 2

n ⊗ E∗) and θα = 0 for all F+
n \ {e}, then one can easily check

that Θ is multi-coanalytic. Thus, we have proved the following lemma:

Lemma 2.3. A module map Θ ∈ B(F 2
n ⊗ E , F 2

n ⊗ E∗) is multi-coanalytic if
and only if the associated Fourier coefficients θα = 0 for all α ∈ F+

n \ {e}.

This also proves the following (well known) observation: A closed sub-
space M ⊆ F 2

n ⊗ E is joint reducing for S ⊗ IE if and only if there exists
a closed subspace K ⊆ E such that M = F 2

n ⊗ K. To prove the non-trivial
implication, let M is reducing for S ⊗ IE . Then the orthogonal projection
PM onto M is a module map. Since PM is self-adjoint it is also a multi-
coanlaytic operator, and hence, by the above lemma, PM must be constant.
Finally, since PM is positive and idempotent, it follows that PM = IF 2

n
⊗PK

for some K ⊆ E .

3. Beurling, Lax and Halmos theorem and commutants

The classical Beurling, Lax and Halmos theorem [14, page 198, Theorem 3.3]
deals with a complete classification of invariant subspaces of vector-valued
Hardy spaces over the open unit disc D. To be more specific, let E∗ be a
Hilbert space, and let S be a closed subspace of H2

E∗
(D). Then the Beurling,

Lax and Halmos theorem says that S is Mz-invariant if and only if there exist
a Hilbert space E and an inner function Θ ∈ H∞

B(E,E∗)
(D) such that

S = ΘH2
E(D).

In particular, the shift Mz on the Hardy space H2
E(D) and the restriction op-

erator Mz|S on S are unitarily equivalent. This has been generalized for Fock
module by Popescu [17]. Here, however, we give a slightly direct (or geomet-
ric) approach to reprove Popescu’s result. This will be useful in characterizing
submodules of Fock n-modules. Along the way we will also parametrize com-
mutants of tuples of noncommutative pure isometries.

Let V = (V1, . . . , Vn) ∈ Bn(H) be a tuple of isometries with orthogonal
ranges. We call such a tuple a pure isometric tuple if Q∞

V = 0. The following
lemma follows from Popescu’s noncommutative Wold decomposition theorem
[16, 23]. However, the explicit description of LV in our version below will be
useful in analysing commutants of pure isometric tuples and all the remaining
results of this paper.
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Lemma 3.1. Let H be a C〈Z1, . . . , Zn〉-Hilbert module corresponding to a
pure isometric tuple V = (V1, . . . , Vn). Let

E := H	
n∑

i=1

ViH =

n∩
i=1

kerV ∗
i .

Then

SOT−
∑
α∈F+

n

V αPEV
α∗ = IH,

and

H =
⊕

α∈F+
n

V αE .

Moreover, the map LV : H → F 2
n ⊗ E defined by

LV (V
αη) := eα ⊗ η = Sα(1⊗ η) (α ∈ F+

n , η ∈ E), (3.1)

is a unitary module map and

LV f =
∑

α∈F+
n

eα ⊗ (PEV
∗αf) (f ∈ H).

Proof. We first note that PE = IH −
∑n

i=1 ViV
∗
i . Hence

V αPEV
α∗ = V α(IH −

n∑
i=1

ViV
∗
i )V

α∗ = V αV α∗ −
n∑

i=1

V αViV
∗
i V

α∗,

for all α ∈ F+
n . For each k ≥ 1, we have∑

|α|≤k

V αPEV
α∗ =

k∑
l=0

∑
|α|=l

(V αV α∗ −
∑

|α|=l+1

V αV α∗) = IH −
∑

|α|=k+1

V αV α∗,

and hence the first equality follows from Lemma 2.1. It is now easy to prove

the second equality: Observe that
⊕

α∈F+
n

V αE is a joint reducing subspace of

V . If f ∈ H and f ⊥ V αE for all α ∈ F+
n , then V α∗f ⊥ E and hence

PEV
∗αf = 0. The first equality then implies that f = 0, which proves the

validity of the second equality. The fact that LV , as defined in (3.1), is a
unitary module map follows readily from the grading of H in the second
equality. The final equality follows from the first and the definition of LV in
(3.1). �

Given a pure isometric tuple V = (V1, . . . , Vn) ∈ Bn(H), the unitary
module map LV constructed in the above lemma is called the canonical mod-
ule unitary operator corresponding to V .

The following general fact will be useful: Given a closed subspace S
of a Hilbert space H, the inclusion map ιS : S ↪→ H satisfies the following
properties:

ι∗SιS = IS and ιSι
∗
S = PS .
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Now, let E∗ be a Hilbert space, and let M ⊆ F 2
n ⊗ E∗ be a submodule

of F 2
n ⊗ E∗. Applying Lemma 3.1, by virtue of Lemma 2.2, to

(S ⊗ IE∗)|M = ((Si ⊗ IE∗)|M, . . . , (Sn ⊗ IE∗)|M),

we obtain the canonical module unitary operator corresponding to (S⊗IE∗)|M
as LS|M : M → F 2

n ⊗ E , where

E =

n∩
i=1

ker
(
(Si ⊗ IE∗)|M

)∗
⊆ M. (3.2)

Then ιML∗
(S⊗IE∗ )|M

: F 2
n ⊗ E → F 2

n ⊗ E∗ is an isometric module map and

M = ran(ιML∗
(S⊗IE∗ )|M).

If we define

Θ = ιML∗
(S⊗IE∗ )|M ,

then Θ ∈ R∞
n ⊗B(E , E∗) is an inner (that is, isometric) multi-analytic opera-

tor, and moreover

M = Θ(F 2
n ⊗ E).

We now proceed to the uniqueness part. Let Ẽ be a Hilbert space, and let Θ̃ be
an inner multi-analytic operator in R∞

n ⊗B(Ẽ , E∗) such that M = Θ̃(F 2
n ⊗Ẽ).

Then for

Θ∗Θ̃ : F 2
n ⊗ Ẽ → F 2

n ⊗ E ,
we have

Θ∗Θ̃Si⊗ IẼ = Θ∗Si⊗ IE∗Θ̃ = Θ∗Si⊗ IE∗ΘΘ∗Θ̃ = Si⊗ IEΘ
∗Ψ = Si⊗ IEΘ

∗Θ̃,

and hence

(Si ⊗ IE)Θ
∗Θ̃ = Θ∗Θ̃(Si ⊗ IE),

for all i = 1, . . . , n. Therefore Θ∗Θ̃ is a module map. On the other hand, since

Θ(F 2
n ⊗ E) = Θ̃(F 2

n ⊗ Ẽ),

for h ∈ F 2
n ⊗ E , there exists h̃ ∈ F 2

n ⊗ Ẽ such that Θh = Θ̃h̃. Then we have

(Si ⊗ IẼ)Θ̃
∗Θh = (Si ⊗ IẼ)h̃ = Θ̃∗(Si ⊗ IE∗)Θ̃h̃ = Θ̃∗(Si ⊗ IE∗)Θh,

that is, (Si ⊗ IẼ)Θ̃
∗Θh = Θ̃∗Θ(Si ⊗ IE)h for all i = 1, . . . , n, and hence that

Θ∗Θ̃ is multi-coanalytic. Lemma 2.3 then implies that Θ∗Θ̃ is a constant
map, that is, Θ∗Θ̃ = IF 2

n
⊗ τ for some τ ∈ B(Ẽ , E). Thus

Θ̃ = Θ(IF 2
n
⊗ τ),

as ΘΘ∗ = PranΘ̃. That τ is a unitary follows from the fact that both Θ and

Θ̃ are isometries and Θ(F 2
n ⊗ E) = Θ̃(F 2

n ⊗ Ẽ).
Thus we have proved Popescu’s noncommutative version of the classical

Beurling-Lax-Halmos theorem (see [2], [17] and [6] for the original versions).
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Theorem 3.2. Let E∗ be a Hilbert space and let M be a closed subspace of
F 2
n ⊗ E∗. Suppose

E = M	
n∑

i=1

(Si ⊗ IE∗)M.

Then the following are equivalent:

(i) M is a submodule of F 2
n ⊗ E∗.

(ii) There exists an inner multi-analytic operator Θ : F 2
n ⊗E → F 2

n ⊗E∗
such that M = Θ(F 2

n ⊗ E).
Moreover, in the latter case, if M = Θ̃(F 2

n ⊗ Ẽ) for some Hilbert space Ẽ
and inner multi-analytic operator Θ̃ : F 2

n ⊗ Ẽ → F 2
n ⊗ E∗, then there exists a

unitary τ ∈ B(Ẽ , E) such that

Θ̃ = Θ(IF 2
n
⊗ τ).

It is worthwhile to note that our approach and presentation is slightly
different than that of Popescu. It is somewhat more convenient to work with
the canonical coefficient space E as described in the above theorem. In par-
ticular, as we will see, the present approach will be useful in the study of
submodules of Fock module and Fock n-modules.

We now turn to the representations of a commutant of pure isometric
tuples.

Theorem 3.3. Let H be a C〈Z1, . . . , Zn〉-Hilbert module corresponding to a
pure isometric tuple V = (V1, . . . , Vn). Let LV : H → F 2

n ⊗E be the canonical
module unitary operator. Then C ∈ {V1, . . . , Vn}′ if and only if there exists
a multi-analytic operator Φ ∈ R∞

n ⊗B(E) such that LV CL∗
V = Φ and the

Fourier coefficients of Φ are given by

ϕαt = PEV
α∗C|E (α ∈ F+

n ).

Proof. Let C ∈ B(H) and let η ∈ E . Then CL∗
V (1⊗η) = Cη, as L∗

V (1⊗η) = η
by (3.1). By the definition of LV , we have

LV CL∗
V (1⊗ η) = LV Cη =

∑
α∈F+

n

eα ⊗ (PEV
α∗Cη).

Clearly, if C ∈ {V1, . . . , Vn}′, then

(LV CL∗
V )(Si ⊗ IE) = (Si ⊗ IE)(LV CL∗

V ),

for all i = 1, . . . , n, and hence LV CL∗
V is a multi-analytic operator. Let

LV CL∗
V = Φ ∈ R∞

n ⊗B(E).

Then by (2.1) we have

Φ(R1, . . . , Rn) = SOT− lim
r→1−

∞∑
m=0

∑
|α|=m

r|α|Rα ⊗ ϕα,
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where ϕα ∈ B(E) for all α ∈ F+
n . Finally, if η, ζ ∈ E , then by (2.2) we have

〈ϕαtη, ζ〉 = 〈LV CL∗
V (1⊗ η), eα ⊗ ζ〉

= 〈
∑

β∈F+
n

eβ ⊗ (PEV
β∗Cη), eα ⊗ ζ〉

= 〈PEV
α∗Cη, ζ〉,

and hence ϕαt = PEV
α∗C|E for all α ∈ F+

n . The converse is obvious. �

Therefore, the unique formal Fourier expansion of Φ ∈ R∞
n ⊗B(E) in the

above proposition is given by

Φ(R1, . . . , Rn) =
∑

α∈F+
n

Rα ⊗
(
PEV

αt∗C|E
)
.

Finally, a word of caution is necessary here: Since

E =

n∩
i=1

kerV ∗
i ⊆ H,

the representation of ϕαt , α ∈ F+
n , in Theorem 3.3 is well-defined.

4. Submodules of Fock n-modules

This section deals with representations of submodules of the Fock n-module
F 2
n. This problem originated from the natural question of whether Beurling,

Lax and Halmos type inner function-based characterizations of invariant sub-
spaces can be valid on Hardy space over the unit polydisc Dn, n > 1. The
answer is negative even for n = 2 (see Rudin [25, Theorems 4.1.1 and 4.4.2]).
On the other hand, recently in [12], an abstract classification of invariant
subspaces of the Hardy space over the unit polydisc has been proposed. Here
we refine the method of [12] to handle the noncommutative tuples and carry
out the classification of submodules of F 2

n. We point out once again that
noncommutative analog of doubly commuting and Brehmer type invariant
subspaces have been considered by Popescu (for instance, see [22, Corollary
5.3]). Our classification results in this section hold for general submodules of
F 2
n.

Let E and K be Hilbert spaces and let T ∈ B(K). We treat K as a
C[Z]-Hilbert module corresponding to T . Now consider the E-valued Fock
module F 2

n ⊗ E as C〈Z1, . . . , Zn〉-Hilbert module corresponding to S ⊗ IE =
(S1 ⊗ IE , . . . , Sn ⊗ IE). Consider the free algebra

C〈Z1, . . . , Zn〉 ⊗C C[Z] = C〈Z1, . . . , Zn, Z〉,

generated by the indeterminates {Z1, . . . , Zn, Z}. Note that

(Z ⊗ 1)(1⊗ Zi)− (1⊗ Zi)(Z ⊗ 1) = 0 (i = 1, . . . , n).

Now we treat (F 2
n ⊗K)⊗ E as a C〈Z1, . . . , Zn, Z〉-Hilbert module, where Zi

and Z corresponds to (Si ⊗ IK) ⊗ IE and (IF 2
n
⊗ T ) ⊗ IE , respectively, and
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1 ≤ i ≤ n. Note that since (Si⊗IK)⊗IE , i = 1, . . . , n, commutes (and doubly
commutes) with (IF 2

n
⊗ T )⊗ IE , the above identification is well defined.

On the other hand, let H be a C〈Z1, . . . , Zn〉-Hilbert module corre-
sponding to a pure isometric tuple V ∈ B(n)(H) and let T ∈ B(H). Suppose
T commutes and also doubly commutes with V . Let F 2

n ⊗ E be the identifi-
cation of H as in (3.1). It follows from Lemma 3.1 that the representation of
T in F 2

n ⊗ E is a constant multi-analytic operator.
The above discussion is the underlying theme of this section, where we

aim at characterizing joint invariant subspaces of Fock n-module F 2
n. Such a

characterization is a consequence of the following key theorem.

Theorem 4.1. Let E∗ be a Hilbert space, T ∈ B(F 2
n ⊗E∗) and let M a closed

subspace of F 2
n ⊗ E∗. Let

E = M	
n∑

i=1

(Si ⊗ IE∗)M.

and suppose T (Si⊗IE∗) = (Si⊗IE∗)T for all i = 1, . . . , n. Then the following
statements are equivalent:

(a) M is submodule of F 2
n ⊗ E∗ and TM ⊆ M.

(b) There exist an inner multi-analytic operator Θ ∈ R∞
n ⊗B(E , E∗) and a

multi-analytic operator Φ ∈ R∞
n ⊗B(E) such that

M = Θ(F 2
n ⊗ E),

and

TΘ = ΘΦ.

Moreover, if either of the above conditions hold, then the Fourier coefficients
of Φ are given by

ϕαt = PE(S
α∗ ⊗ IE∗)T |E (α ∈ F+

n ).

Proof. The implication (b) ⇒ (a) follows from the well known Douglas’ range-
inclusion theorem. So we proceed to prove that (a) ⇒ (b). Suppose M is a

submodule of F 2
n ⊗ E∗ and suppose that M is T -invariant. Define T̃ = T |M

and

(S ⊗ IE∗)|M = ((S1 ⊗ IE∗)|M, . . . , (Sn ⊗ IE∗)|M).

Clearly (Si ⊗ IE∗)|M is an isometry and [(Si ⊗ IE∗)|M, T̃ ] = 0 for all i =
1, . . . , n. Hence, taking into account of Lemma 2.2, it follows that (S⊗IE∗)|M
is a pure isometric tuple. Now we are in the setting of the proof of Theorem
3.2. Therefore

M = Θ(F 2
n ⊗ E),

where

E =

n∩
i=1

ker
(
(Si ⊗ IE∗)|M

)∗
,

and

Θ = ιML∗
(S⊗IE∗ )|M ∈ R∞

n ⊗B(E , E∗).
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Moreover, by Theorem 3.3, there exists Φ ∈ R∞
n ⊗B(E) such that

Φ = L(S⊗IE∗ )|M T̃L∗
(S⊗IE∗ )|M ,

and the Fourier coefficients of Φ are given by

ϕαt = PE

(
(S ⊗ IE∗)|M

)α∗
T̃ |E (α ∈ F+

n ).

Now for each α ∈ F+
n we have

PE

(
(S ⊗ IE∗)|M

)α∗
T̃ |E = PEPM(S ⊗ IE∗)

α∗|MT̃ |E = PEPM(Sα∗ ⊗ IE∗)T̃ |E ,

hence, by the fact that E ⊆ M, we have

PE

(
(S ⊗ IE∗)|M

)α∗
T̃ |E = PE(S

α∗ ⊗ IE∗)T̃ |E .

Finally, from the definitions of Θ and Φ above and the fact that T̃ = T |M =
ι∗MTιM, we conclude that

Φ = L(S⊗IE∗ )|M T̃L∗
(S⊗IE∗ )|M = L(S⊗IE∗ )|Mι∗MTιML∗

(S⊗IE∗ )|M = Θ∗TΘ,

that is
Φ = Θ∗TΘ, (4.1)

and hence ΘΦ = TΘ, as ΘΘ∗ = PM and ran(TΘ) ⊆ M. This completes the
proof of the theorem. �

Now, let M be a closed subspace of F 2
n ⊗ E∗. Then M is submodule

of F 2
n ⊗ E∗ if and only if there exist a Hilbert space E and an inner multi-

analytic operator Θ ∈ R∞
n ⊗B(E , E∗) such that M = Θ(F 2

n ⊗ E). This is
Popescu’s Beurling-Lax-Halmos theorem [16]. However, the above theorem
says that M is also invariant under T if and only if T and Popescu’s inner
function Θ satisfies the operator equation TΘ = ΘΦ for some explicit Φ as
in the statement above.

Remark 4.2. In the setting of Theorem 4.1, if, in addition, T is an isometry,
then

‖Φh‖ = ‖ΘΦh‖ = ‖TΘh‖ = ‖h‖ (h ∈ F 2
n ⊗ E),

and hence it follows that Φ is also an isometry. Suppose now that T is pure,
that is, T ∗m → 0 as m → ∞ in the strong operator topology. Then Φ∗m =
Θ∗T ∗mΘ, m ≥ 1, implies that Φ is also pure.

Now we proceed to submodules of the Fock n-module F 2
n. Recall that

the Fock n-module F 2
n, for n = (n1, . . . , nk) ∈ Nk, is given by

F 2
n = F 2

n1
⊗ · · · ⊗ F 2

nk
.

Clearly, if we denote by

C〈Z〉n := C〈Z1, . . . , Zn1
〉 ⊗C · · · ⊗C C〈Z1, . . . , Znk

〉,
the tensor product of free algebras over C, then F 2

n is naturally a C〈Z〉n-
Hilbert module corresponding to S = (Sn1

, . . . ,Snk
). From this point of

view, a closed subspace M ⊆ F 2
n is said to be a submodule if

XM ⊆ M,
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for all X ∈ Sni
, i = 1, . . . , k. Now if we set

En = F 2
n2

⊗ · · · ⊗ F 2
nk
,

then Theorem 4.1 (applied to En in place of E∗) directly leads to the following
corollary concerning representations of submodules of F 2

n:

Corollary 4.3. Let M be a closed subspace of the Fock n-module F 2
n. Let

E = M	
n1∑
j=1

S1jM,

and En = F 2
n2

⊗ · · · ⊗F 2
nk
. Then M is a submodule of F 2

n if and only if there
exist an inner multi-analytic operator Θ ∈ R∞

n1
⊗B(E , En) and multi-analytic

operators Φij ∈ R∞
n1
⊗B(E), i = 2, . . . , k, and j = 1, . . . , ni, such that

M = Θ(F 2
n1

⊗ E),

and

SijΘ = ΘΦij .

In this case, the Fourier coefficients of Φij are given by

ϕij,αt = PE(S
α∗ ⊗ IEn)Sij |E ,

for all α ∈ F+
n1
, i = 2, . . . , k, and j = 1, . . . , ni.

Remark 4.4. A few comments about the above classification result are in
order.

1. In view of our notation Sn1 = (S11, . . . ,S1n1), the Fourier coefficients
of Φij can be further simplified to

ϕij,αt = PES
α∗
n1

Sij |E ,

for all α ∈ F+
n1

(see Theorem 4.1).
2. In view of Remark 4.2, it follows that Φij is a pure isometry for each

i = 2, . . . , k, and j = 1, . . . , ni.
3. Fix i ∈ {2, . . . , k}. Then by (4.1), it follows that

Φij = Θ∗SijΘ,

for all j = 1, . . . , ni. Consequently, Φ
∗
ipΦiq = δpqIF 2

n1
⊗E for all p, q =

1, . . . , ni. Hence, the ni-tuple Φni
= (Φi1, . . . ,Φini

) is a pure isometric
tuple on F 2

n1
⊗ E for all i = 2, . . . , k.

4. In the setting of Corollary 4.3, if M is a submodule of F 2
n, then

(Sn1
|M,Sn2

|M, . . . ,Snk
|M) on M,

and

(Sn1 ⊗ IE ,Φn2 , . . . ,Φnk
) on F 2

n1
⊗ E ,

are unitarily equivalent.

We conclude this section with the uniqueness of the tuple (Φn2
, . . . ,Φnk

)
on F 2

n1
⊗ E :
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Theorem 4.5. In the setting of Corollary 4.3, let M = Θ̃(F 2
n1

⊗Ẽ) for some

Hilbert space Ẽ and an inner multi-analytic map Θ̃ ∈ R∞
n1
⊗B(Ẽ , En), and let

SijΘ̃ = Θ̃Φ̃ij for some pure isometry Φ̃ij ∈ R∞
n ⊗B(Ẽ) and i = 2, . . . , k and

j = 1, . . . , ni. Then there exists a unitary τ : E → Ẽ such that

Θ̃(IF 2
n1

⊗ τ) = Θ,

and

(IF 2
n1

⊗ τ)Φij = Φ̃ij(IF 2
n1

⊗ τ),

for all i = 2, . . . , k, and j = 1, . . . , ni.

Proof. By Theorem 3.2, there exists a unitary τ ∈ B(E , Ẽ) such that Θ̃(IF 2
n1
⊗

τ) = Θ. Moreover

Θ̃(IF 2
n1

⊗ τ)Φij = ΘΦij = SijΘ = SijΘ̃(IF 2
n1

⊗ τ),

that is, Θ̃(IF 2
n1

⊗ τ)Φij = Θ̃Φ̃ij(IF 2
n1

⊗ τ). The result now follows from the

fact that Θ̃ is an isometry. �

In particular, if (n1, . . . , nk) = (1, . . . , 1), then the Fock module F 2
n

is the Hardy module H2(Dk), and hence Corollary 4.3 (and the uniqueness
theorem above) recovers [12, Theorem 3.2]. However, it is worth mentioning
that the representation of submodules in Corollary 4.3 somewhat finer than
[12, Theorem 3.2]. The major difference here is the coordinate free approach
to submodules of F 2

n as in Theorem 4.1 (for instance, the formalism of κi in
[12, Theorem 3.1] is not essential in the present consideration). This slightly
different technical advantage may actually result in the further development
of multivariable operator theory in noncommutative polydomains.

5. Noncommutative varieties and submodules

First, we briefly recall the necessary definitions and results about noncom-
mutative varieties in B(H)n from [20]. Given a weak operator topology closed
two-sided proper ideal J of F∞

n , the non-commutative variety VJ(H) corre-
sponding to J is defined by

VJ(H) = {(X1, . . . , Xn) ∈ B(n)(H) : ϕ(X1, . . . , Xn) = 0 for all ϕ ∈ J},

where ϕ(X1, . . . , Xn) is defined in the sense of F∞
n non-commutative func-

tional calculus for completely non-coisometric contractions [18].
Now let J be a weak operator topology closed two-sided proper ideal in

F∞
n . Define

MJ := JF 2
n and NJ := F 2

n 	 JF 2
n .

Since J is a two-sided weakly closed ideal, it follows that MJ is a submodule
of F 2

n , and hence NJ is a quotient module of F 2
n [20, Lemma 1.1]. Moreover

MJ = span{Sαϕ(1) : ϕ ∈ J, α ∈ F+
n } and NJ =

∩
φ∈J

kerϕ∗.
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Following [20], define the constrained left (respectively, right) creation opera-
tors as

Bi := PNJ
Si|NJ

and Wi := PNJ
Ri|NJ

,

respectively, for all i = 1, . . . , n. Therefore B = (B1, . . . , Bn) and W =
(W1, . . . ,Wn) are n-tuples of constrained creation operators on NJ . A closed
subspace M ⊆ NJ ⊗ K, for some Hilbert space K, is called a submodule if
(Bi ⊗ IK)M ⊆ M for all i = 1, . . . , n.

The remarkable fact is that B ∈ VJ(NJ) and this constrained tuple
B plays the role of model tuple for tuples of operators in noncommuta-
tive domains [20]. Moreover, we have Popescu’s Beurling-Lax-Halmos type
theorem for submodules of NJ ⊗ K corresponding to the constrained tuple
(B1 ⊗ IK, . . . , Bn ⊗ IK) on NJ ⊗K for Hilbert spaces K:

Theorem 5.1. [20, Popescu, Theorem 1.2] Let J $ F∞
n be a weakly closed

two-sided ideal, and let K be a Hilbert space. A closed subspace M ⊆ NJ⊗K is
a submodule if and only if there exist a Hilbert space G and a partial isometry

Θ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(G,K)

such that M = Θ(W1, . . . ,Wn)(NJ ⊗ G).

Recall here that W (B1, . . . , Bn) is the w∗-closed (or, weak operator
topology closed, as they coincide in this particular situation) algebra gener-
ated by {INJ

, B1, . . . , Bn}, and (see Popescu [20, page 396] and also see Arias
and Popescu [3])

W (B1, . . . , Bn) = PNJ
F∞
n |NJ

= {ϕ(B1, . . . , Bn) : ϕ(S1, . . . , Sn) ∈ F∞
n },

and

W (B1, . . . , Bn)
′ = W (W1, . . . ,Wn) and W (W1, . . . ,Wn)

′ = W (B1, . . . , Bn).

Moreover, the noncommutative version of intertwiner lifting [16] implies that

W (W1, . . . ,Wn)⊗B(E , E∗) = PNJ⊗E [R
∞
n ⊗B(E , E∗)]|NJ⊗E∗ , (5.1)

for Hilbert spaces E and E∗. Note that a similar statement also holds for
W (B1, . . . , Bn)⊗B(E , E∗). The elements of W (W1, . . . ,Wn) are called con-
strained multi-analytic operators. We will use the symbol Θ (or Θ(B1, . . . , Bn)
and Θ(W1, . . . ,Wn) if the presence of (B1, . . . , Bn) and (W1, . . . ,Wn), respec-
tively, is not clear from the context) to denote the constrained multi-analytic
operators in W (B1, . . . , Bn) and W (W1, . . . ,Wn).

The following result furnishes an analogue of Theorem 4.1 in the setting
of noncommutative varieties.

Theorem 5.2. Let E∗ be a Hilbert space, T ∈ B(NJ ⊗ E∗), and let M be
a closed subspace of NJ ⊗ E∗. Suppose T (Bi ⊗ IE∗) = (Bi ⊗ IE∗)T for all
i = 1, . . . n. The following statements are equivalent:

(a) M is a submodule of NJ ⊗ E∗ and TM ⊆ M.
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(b) There exist a closed subspace E of NJ ⊗E∗, a constrained multi-analytic
partial isometry

Θ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E , E∗),
and a constrained multi-analytic operator

Φ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E),
such that

M = Θ(W1, . . . ,Wn)(NJ ⊗ E),
and

TΘ(W1, . . . ,Wn) = Θ(W1, . . . ,Wn)Φ(W1, . . . ,Wn).

Proof. Again, (b) ⇒ (a) follows from Douglas’ range-inclusion theorem. We
now prove that (a) ⇒ (b). The idea is to apply Theorem 4.1 along with
Popescu’s non-commutative version of the commutant lifting theorem in an
appropriate sense. Suppose M is a submodule of NJ ⊗ E∗ and TM ⊆ M.
By the noncommutative commutant lifting theorem (see [16, Theorem 3.2]),
there exists Ψ ∈ R∞

n ⊗B(E∗) such that

Ψ∗|N
J
⊗E∗ = T ∗. (5.2)

Observe that (F 2
n ⊗ E∗) 	 (NJ ⊗ E∗) = MJ ⊗ E∗ is a submodule of F 2

n ⊗ E∗.
Define

MJ = (MJ ⊗ E∗)⊕M.

Clearly, MJ ⊆ F 2
n ⊗ E∗. First, we claim that MJ is Ψ-invariant. Indeed, on

the one hand
Ψ(MJ ⊗ E∗) ⊆ (MJ ⊗ E∗),

as Ψ∗(NJ ⊗E∗) ⊆ (NJ ⊗E∗) and, on the other hand, since M ⊆ NJ ⊗E∗, we
have

ΨPM = (PMJ⊗E∗ + PNJ⊗E∗)ΨPNJ⊗E∗PM

=
(
PMJ⊗E∗ΨPNJ⊗E∗ + PNJ⊗E∗ΨPNJ⊗E∗

)
PM

=
(
PMJ⊗E∗ΨPNJ⊗E∗ + T

)
PM,

and hence ΨM ⊆ MJ . Next we claim that MJ is a submodule of F 2
n ⊗ E∗.

The proof is similar to the proof of the above claim. Otherwise, one may
argue, as in the first paragraph in [20, page 397], that

MJ =
(
F 2
n ⊗ E∗

)
	
(
(NJ ⊗ E∗)	M

)
,

and since (NJ ⊗ E∗) 	M is invariant under (B ⊗ IE∗)
∗, it follows that it is

also invariant under (S ⊗ IE∗)
∗, and hence MJ is a submodule of F 2

n ⊗ E∗.
On the other hand, for each i = 1, . . . , n, we have

PMJ⊗E∗(Si ⊗ IE∗)
∗|MJ

= PMJ⊗E∗(Si ⊗ IE∗)
∗|MJ⊗E∗ + PMJ⊗E∗(Si ⊗ IE∗)

∗|M
= PMJ⊗E∗(Si ⊗ IE∗)

∗|MJ⊗E∗ ,

as
(Si ⊗ IE∗)

∗M ⊆ (Si ⊗ IE∗)
∗(NJ ⊗ E∗) ⊆ NJ ⊗ E∗.
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This implies

PMJ
(Si ⊗ IE∗)

∗|MJ
= PMJ⊗E∗(Si ⊗ IE∗)

∗|MJ⊗E∗ + PM(Si ⊗ IE∗)
∗|MJ

,

and hence

Ẽ = W ⊕
n
∩
i=1

ker
(
PM(Si ⊗ IE∗)

∗|MJ

)
, (5.3)

where

Ẽ =
n
∩
i=1

ker
(
PMJ

(Si ⊗ IE∗)
∗|MJ

)
, (5.4)

and

W =
n
∩
i=1

ker
(
PMJ⊗E∗(Si ⊗ IE∗)

∗|MJ⊗E∗

)
, (5.5)

are wandering subspaces of the tuples (S ⊗ IE∗)|MJ
and (S ⊗ IE∗)|MJ⊗E∗

on MJ and MJ ⊗ E∗, respectively. We conclude therefore, by Theorem 4.1
along with the proof of Theorem 3.2 (and in particular, the construction of
wandering subspace in (3.2)), that there exist an inner multi-analytic operator

Θ̃ ∈ R∞
n ⊗B(Ẽ , E∗) and a multi-analytic operator Φ̃ ∈ R∞

n ⊗B(Ẽ) such that

MJ = Θ̃(F 2
n ⊗ Ẽ),

and

MJ ⊗ E∗ = Θ̃|F 2
n⊗W(F 2

n ⊗W), (5.6)

and

ΨΘ̃ = Θ̃Φ̃,

and the Fourier coefficients of Φ̃ are given by

ϕ̃αt = PẼ(S
α∗ ⊗ IE∗)Ψ|Ẽ , (5.7)

for all α ∈ F+
n . Now we set

E = Ẽ 	W. (5.8)

Then

E =
n
∩
i=1

ker
(
PM(Si ⊗ IE∗)

∗|MJ

)
⊆ MJ ⊆ F 2

n ⊗ E∗.

Next we define

Θ ∈ W (W1, . . . ,Wn)⊗B(E , E∗) and Φ ∈ W (W1, . . . ,Wn)⊗ B(E),
by

Θ = PNJ⊗E∗Θ̃|NJ⊗E ,

and

Φ = PNJ⊗E Φ̃|NJ⊗E , (5.9)

respectively. Now taking into account of the fact that NJ ⊗ E∗ is jointly
co-invariant under (R⊗ IE∗) [20, Lemma 1.1] we have

Θ̃∗(NJ ⊗ E∗) ⊆ NJ ⊗ E ,
or equivalently

Θ̃∗PNJ⊗E∗ = PNJ⊗EΘ̃
∗PNJ⊗E∗ . (5.10)

Note also that

Ψ∗(NJ ⊗ E∗) ⊆ NJ ⊗ E∗,



22 Das, Pradhan and Sarkar

as Ψ∗|NJ⊗E∗ = T ∗ ∈ B(NJ ⊗ E∗). Using these observations and the fact that

Θ̃Φ̃ = ΨΘ̃ we compute

PNJ⊗E Φ̃
∗Θ̃∗|NJ⊗E∗ = PNJ⊗EΘ̃

∗Ψ∗|NJ⊗E∗

= PNJ⊗EΘ̃
∗|NJ⊗E∗Ψ

∗|NJ⊗E∗

= Θ∗T ∗,

which implies

TΘ = PNJ⊗E∗Θ̃Φ̃|NJ⊗E

= PNJ⊗E∗Θ̃IF 2
n⊗Ẽ Φ̃|NJ⊗E

= PNJ⊗E∗Θ̃(PF 2
n⊗E + PF 2

n⊗W)Φ̃|NJ⊗E .

By (5.6), we must have

Θ̃(F 2
n ⊗W) = MJ ⊗ E∗ ⊥ NJ ⊗ E∗,

and hence PNJ⊗E∗Θ̃PF 2
n⊗W = 0. We obtain

TΘ = PNJ⊗E∗Θ̃PF 2
n⊗E Φ̃|NJ⊗E

By (5.10), the later implies that

TΘ = PNJ⊗E∗Θ̃PNJ⊗EPF 2
n⊗E Φ̃|NJ⊗E

= PNJ⊗E∗Θ̃PNJ⊗E Φ̃|NJ⊗E ,

and hence TΘ = ΘΦ. Finally, we use (5.10) again to obtain

ΘΘ∗ = PNJ⊗EΘ̃Θ̃∗|NJ⊗E = PNJ⊗EPMJ
|NJ⊗E = PM.

Therefore, Θ is a partial isometry and M = ranΘ. We postpone the proof of
the fact that E ⊆ NJ ⊗ E∗ till Lemma 6.2. This completes the proof of the
theorem. �

The submodule part of the above theorem reproves Popescu’s version
of constrained Beurling, Lax and Halmos theorem, namely Theorem 5.1 (or
see [20, Popescu, Theorem 1.2]). Here, however, the present proof brings out
more geometric flavour (like the fact that E ⊆ NJ ⊗ E∗). This will be more
evident in the following section.

Moreover, we will return to the constructions of Ẽ andW as in equations
(5.3), (5.4) and (5.5) and the decomposition Ẽ = E ⊕W as in (5.8) in Section
6 when we discuss in more detail about the representation of the constrained
multi-analytic map Φ.

Now we introduce constrained Fock n-modules (quotient modules of
Fock n-modules).

Definition 5.3. Given n = (n1, . . . , nk) ∈ Nk and weak operator topology
closed two-sided proper ideal Ji in F∞

ni
, i = 1, . . . , k, the constrained Fock

n-module NJn is defined by

NJn := NJ1
⊗ · · · ⊗NJk

.
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Since NJn ⊆ F 2
n, the following operators on NJn are well defined:

Bij = PNJn
Sij |NJn

and Wij = PNJn
Rij |NJn

,

for all i = 1, . . . , k and j = 1, . . . , ni. Set Bni = (Bi1, . . . ,Bini), the ni-tuple
on NJn , and let B = (Bn1

, . . . ,Bnk
). Similarly, define Wni

and W on NJn .
Observe that

Bi,j = INJ1
⊗ · · · ⊗Bij ⊗ · · · ⊗ INJk

,

and

Wij = INJ1
⊗ · · · ⊗Wi,j ⊗ · · · ⊗ INJk

,

for all i = 1, . . . , k and j = 1, . . . , ni. Moreover, if 1 ≤ p < q ≤ k and X ∈ Bp

and Y ∈ Bq, then XY ∗ = Y ∗X, that is, Bp doubly commutes with Bq.

Clearly, NJn is a quotient module of the C〈Z〉n-Hilbert module F 2
n.

From this point of view, a closed subspaceM ⊆ NJn is said to be a submodule
ifXM ⊆ M for allX ∈ Bni

, i = 1, . . . , k. The proof of the following corollary
concerning submodules of NJn is now similar to that of Corollary 4.3.

Corollary 5.4. Let Ji be a weak operator topology closed two-sided proper
ideal in F∞

ni
, i = 1, . . . , k, and let M be a closed subspace of the constrained

Fock n-module NJn = NJ1 ⊗ · · · ⊗NJk
. Suppose

En = NJ2
⊗ · · · ⊗NJk

.

Then M is a submodule of the quotient module NJn if and only if there exist
a Hilbert space E, a constrained multi-analytic partial isometry

Θ ∈ W (W11, . . . ,W1n1)⊗B(E , En),

and a constrained multi-analytic operator

Φij ∈ W (W11, . . . ,W1n1
)⊗B(E),

such that M = Θ(NJ1 ⊗ E) and BijΘ = ΘΦij for all i = 2, . . . , k and
j = 1, . . . , ni.

Note, by the way, that the constrained multi-analytic operators

Φ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E),

in Theorem 5.2 and

Φij ∈ W (W11, . . . ,W1n1
)⊗B(E),

in Corollary 5.4 are not canonical. This inconvenience is caused by the fact
that Ψ in the proof of Theorem 5.2 is a lifting of the map T , and hence the
choice of Φ is not uniquely determined, in general, by T . For now we will
leave them alone and take up this issue again in the next section.
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6. Drury Arveson n-modules and the map Φ

In this section we continue our discussion of constrained Fock n-modules by
looking at special noncommutative varieties. More specifically, here we aim at
representing submodules of Drury Arveson n-modules (see the definition of
Drury Arveson n-modules below). Moreover, we will analyze the constrained
multi-analytic map Φ of Corollary 5.4 and see that the representations of Φ for
submodules of Drury Arveson n-modules are more concrete and informative.

We first recall the construction of the Drury-Arveson module. Consider
the Fock module F 2

n and let J denote the weakly closed two sided ideal
generated by

{SpSq − SqSp : p, q = 1, . . . , n} ⊆ F∞
n . (6.1)

Then the quotient NJ is the symmetric Fock space, PNJ
Si|NJ

= PNJ
Wi|NJ

for all i = 1, . . . , n, and (PNJ
S1|NJ

, . . . , PNJ
Sn|NJ

) on NJ and the tuple of
multiplication operators (Mz1 , . . . ,Mzn) on the Drury-Arveson space H2

n are
unitarily equivalent (we will often use this fact implicitly). Moreover

PNJ
F∞
n |PNJ

= M (H2
n),

where M (H2
n) denotes the set of multipliers of H2

n (see [1] and [20]). Recall
also thatH2

n is a reproducing kernel Hilbert space corresponding to the kernel
function

K(z,w) = (1−
n∑

i=1

ziw̄i)
−1 (z,w ∈ Bn),

where Bn denotes the open unit ball in Cn. Moreover, M (H2
n) is a commu-

tative Banach algebra and is given by

M (H2
n) = {ϕ ∈ Hol(Bn) : ϕH2

n ⊆ H2
n}.

We now consider the Fock n-module F 2
n = F 2

n1
⊗ · · · ⊗ F 2

nk
. Let Ji ⊆ F∞

ni

denote the weakly closed two sided ideal generated by the commutants of the
creation operators on F 2

ni
, i = 1, . . . , k, as in (6.1). Then the corresponding

constrained Fock n-module NJn , also denoted by H2
n, is the tensor product

of Drury-Arveson modules {H2
ni
}ki=1, that is

H2
n = H2

n1
⊗ · · · ⊗H2

nk
.

We call H2
n the Drury-Arveson n-module. Clearly

Bij = Wij ,

and, up to unitarily equivalence, they are equal to

Mzij = IH2
n1

⊗ · · · ⊗Mzij ⊗ · · · ⊗ IH2
nk
,

on H2
n, where i = 1, . . . , k and j = 1, . . . , ni. Also, for simplicity of notation

let

Mni
:= (Mzi1 , . . . ,Mzini

) (i = 1, . . . , k).

Corollary 5.4, in the setting of Drury-Arveson n-module, then yields the
following:
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Corollary 6.1. Let n = (n1, . . . , nk) ∈ Nk, and let M be a closed subspace
of the Drury-Arveson n-module

H2
n = H2

n1
⊗H2

n2
⊗ · · · ⊗H2

nk
.

Suppose

En = H2
n2

⊗ · · · ⊗H2
nk
.

Then M is a submodule of H2
n if and only if there exist a Hilbert space E,

a partial isometry Θ ∈ M (H2
n1
)⊗B(E , En), and Φij ∈ M (H2

n1
)⊗B(E) such

that

M = Θ(H2
n1

⊗ E)

and

MzijΘ = ΘΦij ,

for all i = 2, . . . , k and j = 1, . . . , ni.

As promised, we now return to address the representation of the con-
strained multi-analytic operator Φ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E) in
Theorem 5.2. And, at the end of this section, in Corollary 6.4, we will settle
the issue of analytic representations of Φij ∈ M (H2

n1
)⊗B(E). Here we will

work with the same orthogonal decomposition

Ẽ = E ⊕W,

as in (5.8) in the proof of Theorem 5.2. Here

Ẽ =

n∩
i=1

(
ker(PMJ

(Si ⊗ IE∗)
∗|MJ

)
)
, E =

n∩
i=1

(
ker(PM(Si ⊗ IE∗)

∗|MJ
)
)

and

W =

n∩
i=1

(
ker(PMJ⊗E∗(Si ⊗ IE∗)

∗|MJ⊗E∗)
)
,

are also as in (5.3), (5.4) and (5.5). In this setting, we have the following
lemma which seems to be of independent interest:

Lemma 6.2. E ⊆ NJ ⊗ E∗.

Proof. In what follows,
∨

denote the closed linear span in respective spaces.
We observe that

E = Ẽ 	W = Ẽ ∩ W⊥.
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Now we compute

W =

n∩
i=1

(
ker(PMJ⊗E∗(Si ⊗ IE∗)

∗|MJ⊗E∗)
)

= (MJ ⊗ E∗)
∩( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)⊥

= (NJ ⊗ E∗)⊥
∩( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)⊥

=
(
(NJ ⊗ E∗)

∨( n∨
i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
))⊥

,

which implies

W⊥ = (NJ ⊗ E∗)
∨( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)
.

On the other hand, since MJ ⊗ E∗ is a submodule of F 2 ⊗ E∗ we have

(NJ ⊗ E∗) ⊥
( n∨

i=1

(ran(Si ⊗ IE∗)|MJ⊗E∗)
)
,

and hence

W⊥ = (NJ ⊗ E∗)
⊕( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)
.

Next we simplify Ẽ . Observe that

Ẽ =

n∩
i=1

(
ker(PMJ

(Si ⊗ IE∗)
∗|MJ

)
)
= MJ

∩( n∨
i=1

ran((Si ⊗ IE∗)|MJ
)
)⊥

.

In particular, Ẽ ⊆ MJ and

Ẽ ⊥
( n∨

i=1

ran((Si ⊗ IE∗)|MJ
)
)
.

Also since MJ ⊗ E∗ ⊆ MJ we have( n∨
i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)
⊆

( n∨
i=1

ran((Si ⊗ IE∗)|MJ
)
)
,

and hence( n∨
i=1

ran((Si ⊗ IE∗)|MJ
)
)⊥

⊆
( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)⊥

.

This immediately leads to

Ẽ ⊥
( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
)
,
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and hence, finally

E = Ẽ ∩ W⊥

= Ẽ
∩(

(NJ ⊗ E∗)
⊕( n∨

i=1

ran((Si ⊗ IE∗)|MJ⊗E∗)
))

= Ẽ
∩

(NJ ⊗ E∗).

In particular, E ⊆ NJ ⊗ E∗, which completes the proof. �

Recall from (5.1) that if Φ(W1, . . . ,Wn) ∈ W (W1, . . . ,Wn)⊗B(E) is a
constrained multi-analytic operator, then there exists (not necessarily unique)

Φ̃(R1, . . . , Rn) ∈ R∞
n ⊗B(E) such that Φ = PNJ⊗E Φ̃|NJ⊗E . Evidently being

a solution of the commutant lifting, the multi-analytic operator Φ̃ is not
unique and hence any possible definition of Fourier coefficients of Φ will be
ambiguous (for instance, see (6.2) below). However, as we shall see soon, for
constrained Fock n-modules the situation is somewhat favourable.

First we turn to constrained multi-analytic operator Φ in Theorem 5.2.
Here Φ = PNJ⊗E Φ̃|NJ⊗E , and Φ̃ ∈ R∞

n ⊗B(E) (see (5.9)). We note that by

Theorem 4.1, the Fourier coefficients of Φ̃, as constructed in the proof of
Theorem 5.2 (and also see (5.7)) are given by

ϕ̃αt = PẼ(S ⊗ IE∗)
α∗Ψ|Ẽ (α ∈ F+

n ).

In this case, we define the Fourier coefficients of the constrained multi-
analytic operator Φ ∈ W (W1, . . . ,Wn)⊗B(E) corresponding to Φ̃ as

ϕαt := PE φ̃αt |E = PE(S ⊗ IE∗)
α∗Ψ|E (α ∈ F+

n ).

We proceed now to describe the Fourier coefficients ϕαt in detail as follows.
Since, Ψ∗|NJ⊗E∗ = T ∗ by (5.2), and E ⊆ NJ ⊗ E∗ by Lemma 6.2, it follows
that

Ψ|E = PNJ⊗E∗Ψ|E + PMJ⊗E∗Ψ|E = T |E + PMJ⊗E∗Ψ|E ,
and hence

ϕαt = PE(S ⊗ IE∗)
α∗T |E + PE(S ⊗ IE∗)

α∗PMJ⊗E∗Ψ|E , (6.2)

for all α ∈ F+
n . Here note that the appearance of PMJ⊗E∗Ψ (here Ψ is a lifting

of T as in (5.2)) is not so convenient.

We obviate the above inconvenience by restricting T to tensor product
of operators. So we now move to the setting of Corollary 5.4. Here, we treat
NJ as NJ1 , E∗ as

En = NJ2 ⊗ · · · ⊗NJk
,

and T as Bij on NJ1
⊗En for all i = 2, . . . , k, and j = 1, . . . , ni. In this case,

consequently one may choose a lifting Ψij in R∞
n1
⊗B(En) as the constant

multi-analytic operator

Yij := IF 2
n1

⊗ (INJ2
⊗ · · · ⊗Bij ⊗ · · · ⊗ INJk

),



28 Das, Pradhan and Sarkar

for all i = 2, . . . , k, and j = 1, . . . , ni. Let ϕij,αt be the α-th Fourier coefficient
of the multi-analytic operator Φij in W (W1, . . . ,Wn)⊗B(E), i = 2, . . . , k, and
j = 1, . . . , ni. Then (6.2) implies that

ϕij,αt = PE(Sn1
⊗ IEn)

α∗Bij |E + PE(Sn1
⊗ IEn)

α∗PMJ⊗E∗Yij |E .

Since, E ⊆ NJ1
⊗ E∗ by Lemma 6.2, and NJ1

⊗ E∗ is invariant under Yij by
construction, we have that PMJ⊗E∗Yij |E = 0, and hence

ϕij,αt = PE(Sn1 ⊗ IEn)
α∗Bij |E = PEB

α∗
n1

Bij |E ,

asBij |E = PNJ1
⊗EnBij |E and (S1q⊗IEn)

∗|NJ1
⊗En = B∗

1q for all q = 1, . . . , n1.
We have thus arrived at the following companion result to Corollary 5.4:

Corollary 6.3. In the setting of Corollary 5.4, for each α ∈ F+
n , i = 2, . . . , k,

and j = 1, . . . , ni, the α-th Fourier coefficient of the constrained multi-
analytic operator Φij is given by

ϕij,αt = PEB
α∗
n1

Bij |E .

Finally, in view of the above corollary, we now turn to analytic repre-
sentations of Φij ∈ M (H2

n1
)⊗B(E) in Corollary 6.1. So now on, we will be

following the setting of Corollary 6.1.

Denote by σ the symmetrization map from F+
n1

to Zn1
+ . Then

Bα
n1

= PNJ1
⊗En(S

α
n1

⊗ IEn)|NJ1
⊗En = Mσ(α)

n1
,

for all α ∈ F+
n1
. Then, by Corollary 5.4 we have

ϕij,αt = PE(Mn1)
∗mMzij |E (α ∈ F+

n )

where σ(α) = m. Moreover, a standard computation shows, for each m ∈
Zn1
+ , that

#{α ∈ F+
n1

: σ(α) = m} =
|m|!
m!

:=

(

n1∑
i=1

mi)!

m1! · · ·mn1
!
.

Then, for each z ∈ Bn1 we have

Φij(z) =
∑

m∈Zn1
+

|m|!
m!

(PEM
∗m
n1

Mzij |E)zm

= PE

( ∑
t∈Z+

(
∑

m∈Zn1
+

|m|=t

|m|!
m!

M∗m
n1

Mzijz
m)

)
|E ,

and hence Φij(z) = PE

(
I −

∑n1

m=1 zmM∗
z1m

)−1

Mzij |E . We have proved the

following.
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Corollary 6.4. In the setting of Corollary 6.1, for each i = 2, . . . , k and
j = 1, . . . , ni, the multiplier Φij ∈ M (H2

n1
)⊗B(E) can be represented as

Φij(z) = PE

(
I −

n1∑
m=1

zmM∗
z1m

)−1

Mzij |E (z ∈ Bn1).

7. An example and concluding remarks

Structure of isometries (that is, the von Neumann and Wold decomposition
theorem), Beurling, Lax and Halmos theorem, Sarason’s commutant lifting
theorem, and the Sz.-Nagy and Foias analytic model theory have been in-
separable companions in single variable operator theory and function theory.
These concepts are increasingly accepted as stepping stones to the devel-
opment of (both commutative and noncommutative) multivariable operator
theory. However, there are a number of interesting and vital results that hold
for single bounded linear operators but do not hold in general for commuting
and noncommuting n-tuples, n ≥ 2, of operators. Here we aim to present one
such example.

First, we recall the noncommutative version of Beurling, Lax and Hal-
mos theorem (see Theorem 3.2): Let E∗ be a Hilbert space and let M be
a closed subspace of F 2

n ⊗ E∗. Then M is a submodule of F 2
n ⊗ E∗ if and

only if there exist a Hilbert space E and an inner multi-analytic operator
Θ(R1, . . . , Rn) : F

2
n ⊗ E → F 2

n ⊗ E∗ such that

M = Θ(R1, . . . , Rn)
(
F 2
n ⊗ E

)
.

If we assume in addition that n = 1, then

dim E ≤ dim E∗.

This inequality plays a crucial role in single variable operator theory. Here,
on the contrary, if n > 1, then we show that such dimension inequality do
not hold in general, specifically we construct an inner multi-analytic oper-
ator Θ(R1, . . . , Rn) ∈ R∞

n ⊗B(E , E∗) such that dim E > dim E∗. Clearly and
necessarily, here one must consider finite dimensional Hilbert spaces E∗.

Example. Let n > 1 and let Ẽ1, . . . , Ẽn and E∗ be Hilbert spaces. Suppose

dim Ẽi = dim E∗ = m (< ∞),

for all i = 1, . . . , n, and let

E =

n⊕
i=1

Ẽi.

Let {eij}mj=1 be an orthonormal basis of Ẽi, i = 1, . . . , n, and let {fj}mj=1 be
that of E∗. Then

dim E = mn.
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Now for each i = 1, . . . , n, we define linear operator θi : E → E∗ by

θi(epq) =

{
fq if p = i

0 if p 6= i.

An easy calculation reveals that
∑n

i=1 θ
∗
i θi = IE . Set

Θ(R1, . . . , Rn) =

n∑
i=1

Ri ⊗ θi.

Clearly

(Si ⊗ IE∗)Θ(R1, . . . , Rn) = Θ(R1, . . . , Rn)(Si ⊗ IE),

for all i = 1, . . . , n, that is, Θ(R1, . . . , Rn) ∈ F∞
n ⊗B(E , E∗). Moreover

Θ(R1, . . . , Rn)
∗Θ(R1, . . . , Rn) =

n∑
i=1

R∗
iRi ⊗ θ∗i θ = IF 2

n⊗E ,

that is, Θ(R1, . . . , Rn) is an inner multi-analytic operator in F∞
n ⊗B(E , E∗),

where, on the other hand

mn = dim E > dim E∗ = n.

It is now evident, from the above example point of view, to the least,
that extensions of some of the concepts (for instance see the appendix in [12])
of submodules of the Hardy space over polydisc in its full generality is not
possible in the context of multivariable (both commutative and noncommu-
tative) operator theory and noncommutative varieties.

All the main results of this paper remain valid if we replace Fock n-
modules, constrained Fock n-modules and Drury-Arveson n-modules by the
respective vector-valued counterparts and the proofs carry over verbatim.
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